Meeting the challenge of mapping peatlands with remotely sensed data

نویسنده

  • O. N. Krankina
چکیده

Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peat-5 land distribution with a detailed map for the St. Petersburg region of Russia showed significant under-reporting of peatland area, or even total omission. Analysis of the spatial agreement and disagreement with the detailed regional map indicated that the error of comission (overestimation) was significantly lower than the error of omission (underestimation) which means, that overall, peatlands were correctly classified as 10 such in coarse resolution datasets but a large proportion (74–99%) was overlooked. The coarse map resolution alone caused significant omission of peatlands in the study region. In comparison to categorical maps, continuous field mapping approach utilizing MODIS sensor data showed potential for a greatly improved representation of peatlands on coarse resolution maps. Analysis of spectral signatures of peatlands with 15 different types of surface vegetation suggested that improved mapping of boreal peat-lands on categorical maps is feasible. The lower reflectance of treeless peatlands in the near-and shortwave-infrared parts of the electromagnetic spectrum is consistent with the spectral signature of sphagnum mosses. However, when trees are present, the canopy architecture appears to be more important in defining the overall spectral 20 reflectance of peatlands. A research focus on developing remote sensing methods for boreal peatlands is needed for adequate characterization of their global distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping peatlands

Meeting the challenge of mapping peatlands with remotely sensed data O. N. Krankina, D. Pflugmacher, M. Friedl, W. B. Cohen, P. Nelson, and A. Baccini Oregon State University, Department of Forest Science, 321 Richardson Hall, Corvallis, OR 97331, USA Boston University, Department of Geography and Environment, 675 Commonwealth Ave., 4th Floor, Boston, MA 02215, USA Forestry Sciences Laboratory,...

متن کامل

A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data

Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...

متن کامل

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Spatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization

The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...

متن کامل

A model-based approach for mapping rangelands covers using Landsat TM image data

Empirical models are important tools for relating field-measured biophysical variables to remotely sensed data. Regression analysis has been a popular empirical method of linking these two types of data to estimate variables such as biomass, percent vegetation canopy cover, and bare soil. This study was conducted in a semi-arid rangeland ecosystem of Qazvin province, Iran. This paper presents t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008